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Abstract

The present work concerns the investigation of the two-dimensional direct scattering problem of time-harmonic elas-
tic waves from bounded anisotropic components of isotropic media. We obtain a Fourier series expansion for the elastic
field in the interior of the anisotropic inclusion based on a suitable diagonalization applied to the underlying differential
system and a plane wave expansion of the sought field, provided that the inclusion exhibits orthotropic symmetry. This
expansion is then exploited to acquire a semi-analytical solution to the associated elastic transmission scattering prob-
lem. Numerical results for several geometric configurations and varying degree of anisotropy are presented revealing the
pronounced effect of the specific anisotropic character on the scattering mechanism.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent decades, the solution of physical problems involving anisotropic media has received great deal
of attention since the anisotropic character is of paramount concern in many fields of scientific interest. In
particular, the study of wave propagation and scattering of elastic waves in anisotropic media is related to
nondestructive testing, materials characterization at both microscale (e.g., crystals and polycrystals) and
macroscale level (e.g., fiber-reinforced composite materials), seismic theory etc. From a theoretical point
of view, the development of a theoretical model describing the scattering process from anisotropic materials
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constitutes a very interesting mathematical problem with several complication factors due to the direction
dependence, which characterizes the mechanical behavior of the material. Moreover, such a model is re-
garded as an indispensable tool in the analysis of more complicated structures related to a number of engi-
neering applications. Examples include the quantitative evaluation through a model analyzing the
scattering from the sample when the immersion ultrasonic technique is employed, and the stiffness and
stress analysis of an individual lamina (being a constituent of a composite laminate) subjected to forces
in its own plane. The restricted availability of such models for anisotropic elastic scattering is the motiva-
tion for the present work.

Generally speaking, the anisotropy level of the investigated medium, i.e., its symmetry class, dictates the
degree up to which the performance of any analytical calculations is feasible. For a medium exhibiting a high
degree of symmetry, e.g., transverse isotropy, analytic or semi-analytic solutions become available. Examples
of two-dimensional scattering problems involving such media are Mattsson (1994, 1995) and Rajapakse and
Gross (1995) where scattering by a strip-like crack and a cavity is investigated, respectively. In three dimen-
sions, scattering by transversely isotropic cylinders is studied in Honarvar and Sinclair (1996) and Niklasson
and Datta (1998) among others, while an extension of the methodology proposed in Honarvar and Sinclair
(1996) to the case of a cylindrical shell is found in Kim and Th (2003). Other examples of scattering problems
involving transversely isotropic solids are Kundu and Bostrom (1992) and Mal et al. (1992). On the other
hand, when it comes to materials with a higher degree of anisotropy, the investigation of the wave propagation
and scattering phenomena is based upon numerical methods such as the finite element method (FEM; Lord
et al., 1990), the elastodynamic finite integration technique (EFIT; Fellinger et al., 1995), the boundary
element method (BEM; Wang et al., 1996) and the strip element method (SEM; Liu and Achenbach, 1995).

The aim of this paper is to perform a theoretical investigation of the equations governing the elastic
deformations of an orthotropic material in two dimensions with the objective of describing the underlying
displacement field through a Fourier series expansion, to exploit the deduced expansion towards the semi-
analytical solution of the associated elastic transmission scattering problem under plane wave excitation
and to exemplify the effect of the underlying anisotropic character on the scattering procedure through
some numerical results.

The plan of the work at hand is as follows. The analysis of the partial differential equations describing the
vibration of an elastic solid exhibiting orthotropic symmetry under a plain stress state is the subject matter of
Section 2. The decoupling of the coupled differential system of elasticity equations is accomplished through
an appropriate diagonalization procedure and the adoption of a plane wave expansion of the sought solu-
tions. The main outcome of this section is a Fourier series expansion for the elastic displacement field in the
orthotropic medium. In Section 3, the two-dimensional transmission scattering problem of time-harmonic
elastic plane waves from an orthotropic inclusion embedded in an isotropic background medium is formu-
lated. The semi-analytical solution of this well-posed boundary value problem is reached by performing a
Navier eigenvectors expansion of the scattered displacement field (Ben-Menahem and Singh, 1981), utilizing
the obtained Fourier-type expansion for the description of the elastic field in the interior of the anisotropic
scatterer and requiring the satisfaction of the transmission boundary conditions on the anisotropy’s surface
for the involved displacement fields. In the numerical examples in Section 4, we study the elastic response of
an anisotropic solid exhibiting cubic symmetric behavior, for varying degree of cubic anisotropy and several
geometric cross-sections of the scatterer upon observing both far-field and near-field quantities.

2. Investigation of the equation of orthotropic elasticity
The equations of elasticity describe the motion of an elastic medium in terms of an elastic displacement

vector U : G — R? and a stress tensor (0j%), J,k=1,2. Assuming the usual tensor summation convention,
stress and strain are connected by means of Hooke’s law
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Ojk = Cjkanmm j;k>m7n = 1727 (1)
while the components of the strain tensor in terms of the displacement field are

Umn = %(amUn+anUm)a m,n = 1727 (2)

where 0,, indicates the partial derivative with respect to the coordinate x,,, m = 1,2 of a Cartesian system
O(x1,x5). The elastic moduli C,,p, j, k,m,n = 1,2, which characterize the stiffness properties of the material
occupying region G are, in general, real-valued, bounded and measurable functions on G and satisfy the
following symmetry relations:

Cjkmn = Cmnjk = ijmm ja k,m,n = 172 (3)
It is noticed, however, that the rest of the present study deals only with the constant elastic moduli case.

In addition, the elastic moduli share coercivity properties expressed by the relation

2

de > Oa véjk S Cv éjk = ékja é/'kcjkmnzmn =c |éjk|27 (4)
1

2
j=1 k=

where the overbar indicates complex conjugation.
Adopting the terminology presented in Leis (1986), we use the Sommerfeld symbolism for the stresses
and strains defining

oy =011, 0= 03, 03:!=0]2,
e :=Uy, & :=Up, ¢&:=2U)py,
thus obtaining the alternative form of Hooke’s law
o = Oper, Jik=1,2,3, (5)
where we have introduced the 3 x 3 symmetric positive definite stiffness matrix
Cin Cun Cun
0:= : Con Cnn |- (6)
Cin

We remark that the orthotropic medium under consideration is completely characterized by four inde-
pendent stiffness coefficients Cy111, Ci122, Co22o, Ci212, While the remaining elastic moduli are assigned the
values Cj11» = C12 = 0. Therefore matrix Q can also be written as follows:

On On 0
Q = Q12 sz 0 s (7)
0 0 O

where the specific values of its entries in terms of the elastic moduli follow by inspection by taking into ac-
count that the Voigt’s contracted notation Qgg has been used for the relative shear stiffness corresponding to
the entry Qs3. It is also noted that Eq. (5) with Q defined by Eq. (7) correspond to the stress—strain relations
in coordinates aligned with principal material directions for a plane stress state of an orthotropic material
(Jones, 1975). Moreover, the assumption of vanishing coefficients Cj 1, and Cy5 1s by no means a restric-
tive one since the general case where the coordinate system is not aligned with the principal directions of the
material can be obtained if a rotation is introduced. The degenerate case of an isotropic medium is obtained
in case that Q11 = Q1> + 206 and Q> = Oq;. In addition, the requirement of positive definiteness for Q
implies that Q;1,05,06>0 and |Q),] < +/0,,0,, and the coercivity property (4) leads to



K A. Anagnostopoulos et al. | International Journal of Solids and Structures 42 (2005) 63766408 6379

01, <3Oy + 0,). The componentwise form of the equations of elasticity in the case where no exterior
forces apply on region G is

pUj_akaijOa j7k:1a2a (8)

where p is the material density and the overdot symbol indicates time differentiation. Assuming that the
anisotropic medium undergoes harmonic oscillation of the form e " with angular frequency w, Egs. (8)
reduce to the homogeneous, time-reduced, coupled system of elasticity equations

Qna%Ul + (Q1y + 066)010:U> + stagUl + pw’U, =0, )
06501 Us + (015 + 046)010:U 1 + 02,05U; + par*Us = 0. (10)
Decoupling this differential system is equivalent to consider the following eigenvalue problem:
01107 + Q603 + po* — 4 (012 + 04)0102

U gﬂ) (0) (1)
_ , 11
(O17 + 046)0102 Q501 + 0003 + po* — 4 bg)) 0

where 1 stands for a suitable differential operator to be determined shortly and (UUY)" is the corre-
sponding eigenvector with the superscript ‘T denoting transposition. Demanding from the determinant
of the matrix in Eq. (11) to vanish we obtain

2 - [(Qn + Q66)a% + (0 + Q&)ag + 2/’@2];& + (Qna% + Q66a§ + sz)(Qm@% + Q226§ + por’)
—(Op+ Q66)26f6§ =0. (12)

After straightforward manipulations, one can show that the discriminant d of the above quadratic equa-
tion in A is equal to the following differential operator

d= d(@l,éz) = [(Qn - Q66)6% + (sz - Q66)a§]2 - 456%637 (13)
where
S := (011 — O66) (O — Ogs) — (O, + Q66)2‘ (14)

It is to be noticed that dealing with an isotropic medium implies the vanishing of the parameter S, a fact
frequently used in the subsequent analysis. By evoking Fourier transform arguments, the application of
the operator d on every function f{r), r € R?, which belongs to its domain can be expressed through the
relation

df () == / dkd(iky, ik2)e* I (), (15)
RZ
where k := (ky,k») and f (k) stands for the Fourier transform of f{r) defined by
. 1 -
f(k) ::—2/ dre £ (r). (16)
(2m)” Jr2
We remark that the symbol d(iky,1k,) can be decomposed as follows:
d(iky,1ky) = di(k1, ko) da (k1 ka), (17)
where
dy(ky, ka) = (01 — Ose)kT + (O, — Ose)k3 + 2V Skifa, (18)

dy(ky, k) == (O — Oge)k; + (O — Og)ls — 2V/Skiks. (19)
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In view of (17)—(19), one can immediately verify with the aid of (14) that d(ik;,1k,) > 0 for every pair
(ki,k,) € R, Consequently, the operator d has positive symbol and is clearly positive definite. We are then
able to define the square root operator v/d as follows:

Vdf (r) == /R dk\/d(ik, iky)e*r 1 (k), (20)

and proceed with the solution of the operational quadratic equation (12). This procedure leads to the deter-
mination of the eigenvalue operators A, i = 1,2,

lig = %[(Qn + 046)07 + (0n + Q)05 + 2p0” £ \/0_]]: (21)

which in the isotropic limit become 4, = Q4 + pw?® and 1, = Qg4 + pw”, referring to the well known
Helmholtz differential operators concerning the longitudinal and transverse elastic waves, respectively.
Let U:=(U; U,)' be a solution of the system (9) and (10). Then the field U is represented as

U=PFr, (22)
where
U(il) U(iz)
P=| i g | >
U2~1> Uz/»z

is the eigenvector matrix and V := (V; V)" is an auxiliary field whose components V;, i = 1,2 are solutions
of the decoupled equations 4; 7] =0 and 4,V = 0, which in complete form are

[(Qll + 046)07 + (Ory + 046)05 + 2p00” + \/ﬂ Vi=0, (24)
[(Qll =+ Qéﬁ)a% +(0n + Qﬁé)ag +2p’” — ‘/ﬂ Vy=0. (25)

In order to determine the functions V,, i = 1,2, we first exploit the commuting property of 4, i = 1,2,
which assures that 4;4,V; =0, i = 1,2. Defining the operator L by

Li=J1la = [(On + Q)01 + (On + 050 + 20“’2}2 —d, (26)

one can show that the determination of the sought functions V;, i = 1,2 satisfying 4;V; =0, i = 1,2 reduces
to the solution of the fourth-order scalar differential equation LY = 0. Indeed, for every ¥ satisfying
LY =0, we easily verify that W;:= LY (resp. W,:=1,¥) satisfies the equation A W;=0 (resp.
JoW> =0) and therefore the pair (W, W,)' is a suitable candidate pair of functions for the sought pair
of solutions (¥, V>)'. We postpone the treatment of equation LY = 0 and proceed with the implementa-
tion of the transformation induced by Eq. (22). Adopting the reasonable symbol correspondence 1; <
(+) and 4, < (—) we find from (11) that

- - d
[Qn . % &+ Oss . On &2 g U 4+ (01 + 0gs)010:U%) = 0. (27)

Consequently, the matrix P given in Eq. (23) can be selected as follows:

(O15 + O6)0102 —(012 + Og6)010,

P_—
\/_ \/_
2 1 2 2 2 2 1 2 2 2

(28)
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where R is an arbitrary linear operator commuting with the differential operators appeared in the entries of the
matrix P (actually R can be considered as part of a redefined vector V). The transformation (22) now reads

Ui = (Qia + Qg)010:2R(Vy = V2), (29)

U, = | s ; u o + Ox ;Q“ RV —V») JF@R(V1 + V). (30)
Given that V7 = 4, and V>, = 4P, where ¥ solves LY =0, we have

(Vi = V) = —VdP, (31)

(V1 +V2) = [(Q11 + Qs6)0t + (O + 0g6)0 + 2p07] . (32)
Selecting R := (1/(0,, + Og))(Vd) ™", with the operator (v/d)™' defined through the relation

-1 — ;
Vay s o)i= | s

we obtain the differential representation
Uy =-0,0,7, (34)
Uz = (Q1r+ Ogs) (01181 + Q603 + po®) . (35)

It is easily verified that the pair (34) and (35) satisfies the coupled differential system of elasticity (9) and
(10) with ¥ € Ker L. In addition, this differential representation in the isotropic limit reduces to the well-
known Helmholtz decomposition

U, Uy Ui) .
= =V +V x (¥'x3), 36
(U) (U§>+<U3 PV B

where X3 denotes a unit vector perpendicular to the x;x,-plane.

As far as the investigation of the fourth-order scalar differential equation LY = 0 is concerned, we first
note that in the degenerate case of an isotropic medium, that is, Q;; = Q> + 2Q¢s and O, = 0Oy}, the oper-
ator L simplifies to Lisorr. := 40114 + pw*)(Qgsd + pw?) and hence its kernel consists of all the solutions of
two scalar Helmholtz equations with different wave numbers. Thus an appropriate basis for KerL;s,, con-
sists of the set {X,(kr)e™?,m € Z,t =p,s}, where (r,p) are the polar coordinates, k, := w+/p/0,
ks := w+\/p/QO¢ and X, vary over the possible alternatives of the Bessel or Hankel functions of the first
and second kind and integer order. On the other hand, in the general anisotropic case, the rotation invari-
ant character of the corresponding isotropic operator is no longer preserved and this fact is expected to
have an impact on the symmetries of the sought solutions. The polar geometry is not the convenient con-
figuration any more since the elements of the aforementioned basis fail to annihilate the L operator for any
value of the wave number k,. For this reason we proceed by seeking solutions expressed via plane waves of
the form e " where r := (x|, x,) is the position vector and k= (cosu,sinu), u € [0,27) is the plane wave
propagation unit vector. Forcing the plane waves e %" to belong to Ker L, that is,

0= {[(Q1 + Q)] + (O + 0e) + 200]” = [(Q1) — Q)] + (Qan — Q)] — 450105 {47,
(37)

17 (k), (33)

we find that

0= {Q11Q660054“ + 05, 0gesin*u + [(Qy1 + 02) Ogs + S]coszusinzu}k4
- sz{(Qn + Oge)c0s’u + (Op + Q66)Sin2u}k2 + pro’. (38)
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Solving the last equation, which constitutes the dispersion relation for the underlying orthotropic med-
ium, in terms of the wave number k& we obtain

(011 + Og)c0s’u + (0, + Oge)sin’u + /Dy (u)

=K. (u) = pa* (39)

2D;(u) ’
where
Dy (u) == [(Qy; — Ogs)c08’t + (0 — Q66)sin2u]2 — 4Scos?usin’u, (40)
and
D (1) := 0y,046c08*ut + 0y, Ogesin‘u + [(O) + 0) Oy + S|cosusin’u. (41)

The expected functional dependence of the wave numbers k() on the propagation direction cosines is
obvious in (39). Moreover, the established constraints on the values of the elastic moduli assure that
Dy, D, >0 and the nominator in (39) is always greater than zero.

The analysis above provides with plane-wave type solutions for the equation LW = (. By superposing
these solutions over the interval [0,27) with square integrable amplitudes, one can form the set 2 of aniso-
tropic plane wave solutions as follows:

2= {cﬁ iR — C, ¢ C*(R’) and ¢(r)
= [ et o @ A for 4. € 20,20 -
0

where k. (u) are given by the square roots of the right-hand side of Eq. (39). The establishment of the fact
that every regular solution of the scalar differential equation LY = 0 can be considered either as a member
of the set 2 or the appropriate limit of functions belonging to 2 is an issue deserving special attention. The
specific assertion has been proved to be valid in the isotropic case, when the set 2 contains exactly the well-
known Herglotz wave functions (Colton and Kress, 1992, 2001), which approximate at least in L*-norm
every solution of L, ¥ = 0 since the latter equation is decomposed in two scalar Helmholtz equations.

More precisely, in the isotropic case, the obvious reductions k = k) = w+/p/0;,(w+/p/Qgs) (indepen-
dent of the propagation direction) hold and the general solution ¥(r), in interior domains containing the
origin O, can be proved to constitute the limit in L*-norm of the Herglotz plane-wave solutions (Colton
and Kress, 2001). In this context we consider the Fourier series expansions for the amplitudes A4/u),
t=p,s as follows:

A (u)(:= Ap(u)) = % > A, imem™, (43)
A (u)(:= A,(u)) = % > B, i"e™, (44)

where 4,,, B, are arbitrary constants. Exploiting the integral representation (Morse and Feshbach, 1953)

. 1 o
Jm (kr)elm(p — Znim / eflkk...elmu du, (45)
0

where J,,(kr) are the Bessel functions of the first kind, we find that
W(r) = At (k)™ + > By (ksr)e™, (46)

meZ meZ
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which is recognized as the usual Bessel-Fourier expansion of interior Helmholtz equation solutions in polar
coordinates. According to our previous comments, Eq. (46) holds in the L*-sense.

However, in the anisotropic case, the above results have to be reexamined in order for every solution ¥
of LY =0 to be expanded in terms of the anisotropic plane waves, that is,

2n N . B
P(r) = / {A+(u)e*ik+<“>’” —&-A,(u)e""*(”)""} du, (47)
0

where equality is equivalent to convergence in an appropriate functional space. The integrals appearing in
the right-hand side of Eq. (47) can be considered as generalized ‘anisotropic’ Herglotz functions and hence
one has to establish the denseness of these functions in the space of solutions of LY = 0. The basic argu-
ments assuring the completeness of the anisotropic plane wave functions have been developed by the
authors and presented in Appendix A. This completeness result assures that the solution ¥(r) can be rep-
resented as

1 [
V) =Y Ay / gkl

meZ

2n

e—ik,(u)if-reimu du. (48)

meZ 0

Based on this representation, the Cartesian components of the sought elastic field U := (U, U,) given by
Egs. (34) and (35) assume the following Fourier series expansions:

1 41 Z Z @iu( )} (49)

Z ZA {pw <15i M@ﬁ(l‘) (Q“ 4 Q66) [@,i; ( )"' @nz+2( )]}7

Us(r) =
Q12+Q66 — 4o

(50)

where the symbol ", indicates summation over both (+) and (—) quantities and the basic functions @ (r)
and @7 (r) are defined by the following integral expressions:

1 2n ) o

DE(r) = S /0 g ks lwkrgimi gy, (51)
1 2n ) L

OL(r) = 5 I (u)e ke krgimu dyy, (52)

We notice here that the u-dependence of the wave numbers complicates the performance of the inte-
grations appearing in Eqgs. (51) and (52). An analytical approach treating these integrals based on com-
plex analysis integration arguments, that is, substitution z=-¢" and application of Cauchy integral
techniques to the resulted integral on the unit circle of the complex plane has been attempted. Unfortu-
nately, it can be shown that the appearance of the square roots in k.(z) results in several branch points
both inside and outside the unit circle thus rendering the performance of the complex integration a dif-
ficult task, which can be alleviated only in the asymptotic analysis region since steepest descent argu-
ments can then be evoked. Unambiguously, an asymptotic analysis approach would restrict radically
both the physical and the geometrical framework of our problem. In contrast, the employment of a sim-
ple numerical integration scheme, e.g., a trapezoidal rule approximation, performed easily on the interval
[0,2m), turns out to be a rational choice leading to very accurate representations of the basis functions,
which are very exploitable from the application point of view. In the forthcoming numerical examples
such an approach is implemented.
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3. Scattering by a two-dimensional orthotropic inclusion

In the sequel, our previous theoretical results concerning the Fourier series expansion of the elastic dis-
placement field in an anisotropic material exhibiting orthotropic symmetry are exploited in order to solve a
specific boundary value problem (BVP), namely the elastic transmission scattering problem. In particular,
we consider the two-dimensional scattering problem of the elastic plane waves #"(r) from an orthotropic
scatterer occupying region G, which is characterized by the fourth-order stiffness tensor C =
CiomnX; @ X @ Xy @ X, j,k,m,n=1,2 (the symbol ‘®* denotes juxtaposition of two unit vectors) and the
material density p;,, and is embedded in an isotropic background medium with Lamé constants A, u and
mass density pey. In mathematical terms, the transmission scattering problem can be formulated as a task
of determining the scattered field & e [C2(R*\G)’N[C'(R*\ G)] and the interior field

u™ € [C*(G)]’ N[C'(G))* such that
V- [C: Va™ ()] + pip’u™(r)0, 1 €G, (
AW (r) 4 po 0’ (r) =0, recR*\G, (54
u"(r) —uw(r) = f(r), redgG, (
V- C: V™ (r) — Toqu™(r) = h(r), r € dG, (

al

lim —& ikf’“uf“(r)) =0, t=np,s, (57)
with specific data f{r) := #™(r) and h(r) := To™(r) for r € dG. The first two equations are the underlying
differential equations with 4™ := u4 + (1 + p)VV-, denoting the Lamé operator and *’ indicating a double
contraction, i.e., (@@ bR cRd): (e R f) =(d-e)(c- f)la® b). Egs. (55) and (56) represent the transmission
boundary conditions (BCs) assuring displacement and stress continuity through the discontinuity surface
0G, while Eq. (57) stands for the Kupradze (1979) radiation conditions, applying to the longitudinal and
transverse parts of the scattered field #**'(r) = w5 (r) + 4" (r) and being valid uniformly over all directions
i :=r/|r| = r/r. We also mention that v - C : Va™™(r) is the elastic conormal derivative of the interior field

u™(r) on 0G, k;“ = 0/ Pexe/ (4 + 210) and k& := w1/ pey /1t are the longitudinal and transverse wavenum-
bers, respectively, in the background medium, while

Texo :=2u0 -V + WV - +uv X VX, (58)

stands for the surface traction operator in terms of the outward unit normal ¥ on scatterer’s surface.

The BVP (53)~(57) disposes a weak formulation, in which #* € [H] (R*\ G)]’, #™ € [H'(G)F and the
pair (f; h) of boundary data is in [H 1/ 2(0G)T x [H*l/ 2(3G)F (H* denotes the usual Sobolev space). This more
general transmission problem can actually be considered as a special case of the corresponding transmission
problem examined thoroughly in Charalambopoulos (2002), where the problem of scattering by a generally
anisotropic inhomogeneous inclusion in R? is investigated. There it is shown that, when specific data (f; h)
are prescribed on the boundary 0G, the transmission problem (in its weak form) possesses a unique solu-
tion, i.e., a solution pair («*",#™"), depending continuously on the surface data. This well-posedness is, of
course, inherited to the transmission problem in its classical form (53)—(57) through boundary value prob-
lem’s regularity theory.

For the solution of the well-posed BVP under discussion, a method based on the representation of the
scattered displacement field #*'(r) in terms of the Navier eigenvectors is adopted. It is well known that Na-
vier eigenvectors result from the Helmholtz decomposition and constitute a complete set of vector functions
in the space of solutions of time-independent Navier equation. Hence, in the polar coordinate system (r, ¢),
the scattered field assumes the representation
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u( Z {42 LD (1) + BMP (r)}, reR*\G, (59)

m=—0o0

in terms of the irrotational eigenvector LY (r) and the solenoidal one MY (r), which are defined through the
relations

1

Lfrf)(r) = kext V'P%,)p(r)’ (60)
1

MEnl)(r) - kcxtvlpl(rf,)s(r> X '%3' (61)

The set of scalar Helmholtz equation solutions {‘I’f,f?t(r),m €Z,t=p,s,] =1,2,3,4} is given by
‘P“),(r) = XU (k)elme, (62)

while X!/ = {Jn(kr), Y, (kr), H D (kr), H kr)} according as /=1,2,3,4, respectively. The specific
selectlon l = 3 in representation (59) which corresponds to the choice of Hankel functions of the first kind
and of integer order, assures the appropriate behavior of the scattered field at infinity.

The description of the elastic displacement in the interior of the orthotropic scatterer takes advantage of
the Fourier-type expansion deduced in the previous section. Exploiting Egs. (49) and (50) and approximat-
ing the integral expressions in Egs. (51) and (52) by a M-point trapezoidal rule, the Cartesian components
of #™(r), r € G are given as

c—m' M
1nt (,,. 90) Z;:_x {lﬁ Z {A;, Z {ki(u]) sin u; cos uje*ik:(uj)VCoS(Q’*uj)eim/u, } } }’ (63)
+

=1

00 c—m' M 1
(o) = 3 {7 ;{Ai’;{—@ﬁ o b — ()

m'=—o0

X (Qy,c08°u; 4 Qggsin’u j)]eikiw»rcoswu»eim'u_,-} } } , (64)

where u; =2n(j — 1)/M, j=1,.
The incident plane wave u‘“c(r) Wthh excites the scatterer, propagates at an angle o with respect to the
xj-axis and is either of compressional type (longitudinally polarized P-wave), that is,

u"™(r) = (cos oy + sin ok, )elp 7eos0 =) (65)
or a transversely polarized shear S-wave of the form
u™ (r) = (— sin ok, + cos ok, )ells o), (66)

The determination of the unknown coefficients A%, B, A',, A", entering the above expansions will be
accomplished by requiring the satisfaction of the BCs (55) and (56), which actually involve four scalar equa-
tions dependent on the azimuthal angle ¢, when projected on the unit vectors ¥, X,. Obviously, Eq. (56)
requires the calculation of the tractions from the scattered, the transmitted and the incident fields. The appli-

cation of the surface traction operator given in (58) on the expansion (59) for the scattered field leads to

Tott™ (r) Z {{45D;, (7, @) cos @ — D2(r, @) sin @] + B [Z., (r, ) cos @ — Z%(r, @) sin @] } %,

m=—0o0

+{A (D, (r, @) sin @ + D (r, @) cos @] + BX[Z) (r, @) sin @ + Z%(r, @) cos @] } Xo},  (67)
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where the expressions for D!, (r, ¢), Z. (r, @), t = r,¢ are given in Appendix B. The elastic conormal deriv-
ative of the transmitted field #™'(r) on scatterer’s surface is given as

.C: Vu““ (r) = Z {z:{Ai (r, @)X, +G (7, (P)&Z]}}v (68)

m'=—0

where FZ (r, ¢) and G (r, @) are also described in Appendix B. Finally, the surface traction due to the inci-
dent plane wave (65) of compressional type is easily found to be

T ™ (r) = ik;’“eik?m’s(“””{ [vi (2ucos®or + 4) + v (usin 200)| &y + [vy (psin 20) + v, (2usin’o + A)]x:},
(69)
while for the shear wave (66) the surface stress is

T o™ (r) = k<030~ [y (= psin 20) + vy (g cos 2a)]&) 4 [vi(cos 2a) + vo(usin 20)]%,},  (70)

where v;, v, are the Cartesian components of v.

So far, nothing has been said about the geometric characteristics of the two-dimensional scatterer. We
consider two cases, namely, an elastic orthotropic inclusion of circular and elliptical cross-section. In the
former case the boundary surface is determined by r = @, where « is the radius and the outward unit normal
is simply given as v = ¥ = (cos pX; + sin ¢x;), ¢ € [0,2n). In the case of an ellipse with semi-axes ag, by
a; —

(ap > bp) and hence semi-focal distance 4 = bé, the elliptical surface is specified by uy = cosh™'(ao/

h) and v = (sinh ug cos vX; + cosh u sin vx,)// cosh’uy — cos?v, v € [0,2n) in terms of the elliptical coordi-
nates (u,v).

Having in our disposal the expressions describing the displacements and tractions for the underlying
fields, the formulation of the linear system whose solution determines the unknown expansion coefficients
proceeds in an natural way. The four scalar BCs are satisfied in a pointwise sense, that is, on a specific num-
ber of boundary points. According to our previous comments concerning scatterer’s geometry, a grid of N
equidistantly distributed boundary points consists of the set {(r,,¢,), n=1,...,N}, where r, =a, ¢, =
2n(n — 1)/N in the case of a circle and r, = h\/sinh’uy + cos’v,, ¢, = cos ! ((hcoshugcosv,)/r,),
v, = 2n(n — 1)/N in the case of an ellipse. An alternative approach exploiting the orthogonality of the trig-
onometric azimuthal functions is proved to be equivalent due to the employment of the trapezoidal rule in
Egs. (63) and (64). Obviously, in both cases, a truncation procedure needs to be imposed on the infinite
series in order for the numerical implementation to become practically feasible. The truncation levels of
the infinite series must be in accordance with the selected number of points on the boundary in order to
conclude to an algebraic system with equal number of equations and unknowns. Hence, letting L, and
L, denote the levels at which the series in (59) and in (63) and (64) are truncated, respectively, and N
the number of points on surface 0G (either circular or elliptical) at which the set of the four scalar BCs
is satisfied, it must hold that N = L, + L, + 1; the choice of these parameters for appropriately solving
the resulted linear system is discussed in Section 4.

The final nonhomogeneous system can be written in the matrix form

o/x =b, (71)
where the 4N x4(L; + L, + 1) complex matrix .o/ is given as
e%Tlex\ r%fext @er @f*
!@/243)( ng‘( @/24 @124*

a A°Xt Bext At A~
'ﬁN '@N ‘@N @N
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with the submatrices %8¢ € C*1*V p=1,.. N, s= {4 B} and @' c C*2") pn=1,... N,
t={A", 47} defined by

_(1>BiL|,t1 (I)BiL1+l,n (UBSLI,n_
2 ps @ ps @ ps
—Lyi,n —Li+1.n Ly.n
A= g - o | (73)
B—Ll,n B—L1+14n BLl,n
4) ps 4) ps 4) ps
-( >BfL1‘n ( )Blele,n ( >BLl,n 4
r(1 1 1 .
( )B[—Lzm ( )Bthleﬁn ( )Bthﬁn
2 2 2
g ( )Bt—Lz,n ( )Bt—Lz-H,n Lo )Bsz‘n 7
TGt ©F:1 ... Op ’ (74)
—Lyn —Ly+1n Ly.n
L (4)B[7L2An (4)BiLz+lAn (4)BrLz,n J

and their elements V'B;, . m=—Ly,...,Ly,j=1,2,3,4and VB, . m'=—L,,...,L,, j=1,2,3,4 are given
in Appendix B. The vector x of the unknown coefficients is defined by

x = [A% AN B B Af, Apl Az, 4], (75)
while the right-hand side vector b is given as
e A e X A (76)

with bff), n=1,...,N,j=1,2,3,4 denoting the projections of the right-hand side of Eq. (65) (resp. Eq. (66))
on X1, X; (j =1,2) and of Eq. (69) (resp. Eq. (70)) on x|, X, (j = 3,4), calculated at the nth boundary point,
in case of longitudinal (resp. transverse) incidence.

The solution of the algebraic linear system (71) leads to the determination of the expansion coefficients
for the scattered and the transmitted wave. The far-field representation of the scattered field is obtained by
incorporating the large argument representations of the Hankel functions and their derivatives into the
expansion (59), which then reads

ik R kS R
() =g D)+ (D) OGP, ] o, (77)
with the radial and tangential scattering amplitudes defined over the unit circle be given as
2 2 u T
g, (F;d.p) = 1<@> Z {ageiom+1)Zem i, (78)
A 2 12 L _ -
e =i() 3 {Breinsnfer o) (79)
nks m=—L 4

and the vector parameters (F; d, p) in the previous definitions corresponding to (observation vector; direc-
tion of incidence, polarization vector of incident wave).
4. Numerical results

In this section we present computed results based on the numerical implementation of the semi-analyt-
ical scheme described in the previous section. We examine three cases concerning the circular and the
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elliptical scatterer as well as the case of a multiple scattering problem involving two circular scatterers each
filled with an anisotropic medium exhibiting a specific class of symmetry. The approach to the latter case
follows generally the same lines as the one we have already described with only a substantial difference lying
in the fact that the scattered field is obtained as the superposition of two outgoing individual fields, each
one expressed with respect to a coordinate system associated to each one of the scatterers.

Before presenting results for the aforementioned numerical applications, we give some details about the
numerical complexity of the proposed method as well as the checks and comparisons made for validating
our solution. The computational load associated with the numerical solution depends both on the length of
the truncated expansions, i.e., the parameters L, L,, and the number M of integration points employed by
the trapezoidal rule. As far as the selection of M is concerned, it is made on the natural basis that an in-
crease of this parameter does not change the estimated value of the several integrals appreciably (e.g., for
M > 150, at least 12 significant digits remain unaltered). Needless to say that any other quadrature rule
could have been used instead of the trapezoidal one (a Gauss—Legendre quadrature formula has also been
employed for comparison purposes). Referring to the truncation levels L; and L,, their values should be
generally large since the number N = L; + L, + 1 of ‘collocation points’, that is, points on the scatterer’s
surface at which the transmission boundary conditions are enforced, has to be a considerable one in order
to obtain a good approximation of the sought-for solution and thus an accurate representation of the in-
volved fields. This fact has, as one might expect, an immediate impact on the condition number of the re-
sulted coefficients matrix .o/, which can, however, be improved by a normalization of its elements. In
particular, the matrix elements V)B4, UBE™ (Upi" and VB4, = (j=1,2,3,4) are normalized with
Hﬁnl)(k;”a), HY(k™a), J,p(k'a) and J,, (k;ffa), respectively, where k;ff and k™' are the wavenumbers of a
reference isotropic material and a is a characteristic dimension of the scatterer under consideration. The
aforementioned material with the dimensionless values A= 2.0 and p.r= 1.5 for the Lamé constants
and the dimensionless mass density p,.c = 2.0, will serve in the sequel as a standard one wherever scattering
by an isotropic inclusion is encountered. Following this procedure and solving the system of Eq. (71) by an
LU decomposition algorithm for the normalized nonsymmetric square matrix .7, at least four-digit conver-
gence has been achieved in all cases with truncation numbers 18 < L; = L, < 20.

The numerical calculations were checked in several ways. Energy consistency has been checked by appli-
cation of the well-known forward-scattering theorem (Dassios et al., 1995), which states that

7 = 2\/,§Im{<1 ~i)g (@)}, (30)

o — z%lm{u g, (@, f)}, (81)

where the polarization vector ¢, is obtained by rotating d anticlockwise by m/2 and the total scattering
cross-sections ¢y, and o for plane wave P- or S-incidence (see Eqgs. (65) and (66)), respectively, are defined
by

2n
op = k' / {0 g, (s d F + k) g, (. ) | do, (82)

2n
oy = K / {69 g, (73, 00) + (k) g, (75, @) } doo (83)

The relative error computed by independent calculations of each side of (80) and (81) was generally less
than 0.05%. Moreover, our solution has successfully passed the test of conforming with the principle of reci-
procity, which in the present case is expressed through the relations



g (i d. d) = g,(—d; —ir, ), (84)
g, (i d, ¢g) = (K /KO g (—d; =i, —#), (85)
g,(Fd,d) = (kX /K g, (—d; —F, — ), (86)
g, (id, p,) = g,(—d; i, —p). (87)

Furthermore, the results obtained by the proposed method have been tested against those produced by
other methods for some particular cases. At a first stage, a comparison has been made with the outcomes of
a pure analytic solution derived by the authors to the problem of scattering of plane waves from an isotro-
pic circular inclusion, which is based on the employment of Bessel-Fourier expansions for the elastic field in
the interior of the scatterer. The comparison has lead to an excellent agreement verifying simultaneously the
accuracy of the numerical evaluation of the basic functions @7 and @ used in the present study. At a next
stage, our solution is compared with existing computational results provided by a BEM approach (Polyzos
et al., 1998; Verbis et al., 2001) to the scattering problem of plane waves by an isotropic inclusion. For the
shake of brevity, comparison is herein restricted to the indicative case depicted in Fig. 1, which corresponds
to the scattering of a P-incident plane wave propagating at an angle « = 0, by an isotropic elliptical inclu-
sion with semi-axes ratio equal to 1.2 and elastic parameters equal to those of the reference material men-
tioned above. The Poisson ratio for the isotropic background medium has been taken equal to 0.25 and the
dimensionless frequency k;’“ao = 1.0, with aq being the major semi-axis of the elliptical cross-section. As it is
apparent, the agreement between the two methods is excellent.

We now proceed with the numerical applications described at the beginning of the section, which all deal
with a special case of an orthotropic medium, namely a cubic medium with three independent stiffness coef-
ficients since cubic symmetry class establishes the additional symmetry relation Cyy; = Cyyq; or equiva-
lently Q> = Q;; between the stiffness matrix elements. For the isotropic host medium we assume the
dimensionless values 4 = u = 1.0 for the Lamé constants and the dimensionless density pe, = 1.0. It is men-
tioned that the assumption of equal Lamé constants is by no means an essential or a restrictive one, but it

--lg ¢(¢)L Present method
° Ig¢(¢)|, BEM solution

— Igr(q))l, Present method
- lg (9)I, BEM solution

Fig. 1. Angular distribution of the scattering amplitudes |g{¢)| and |g,(¢)| for P-incidence with « =0 on an isotropic elliptical
inclusion.
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Fig. 2. Angular distribution of the radial scattering amplitude |g,(¢)| for P-incidence with o =0 on the circular inclusion.
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Fig. 3. Angular distribution of the radial scattering amplitude |g,(¢)| for P-incidence with & = n/2 on the circular inclusion.

serves our primary objective of focusing only on the properties of the anisotropic inclusion. For the cubic
material, the density is p;,; = 2.0 and k;’“a = 1.0 is the dimensionless frequency, where a is the radius of the
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Fig. 4. Angular distribution of the radial scattering amplitude |g,(¢)| for P-incidence with o = n/4 on the circular inclusion.
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Fig. 5. Angular distribution of the radial scattering amplitude |g,(¢)| for P-incidence with & = 1/9 on the circular inclusion.

circular cross-section or the major semi-axis of the elliptical one. In addition, we introduce the cubic anisot-
ropy ratio, which is also referred to as Zener anisotropy factor
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Fig. 6. Angular distribution of the tangential scattering amplitude |g,(¢)| for S-incidence with o =0 on the circular inclusion.
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Fig. 7. Angular distribution of the tangential scattering amplitude |g,(¢)| for S-incidence with « = 7/2 on the circular inclusion.

20¢
A== 88
O, — 0O, (88)
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Fig. 8. Angular distribution of the tangential scattering amplitude |g,(¢)| for S-incidence with « = 7/4 on the circular inclusion.
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Fig. 9. Angular distribution of the tangential scattering amplitude |g,(¢)| for S-incidence with « =7/9 on the circular inclusion.

with the degree of anisotropy measured by the deviation of 4 from the value 4 = 1.0, valid for an isotropic
medium. In the forthcoming examples, the case 4 = 1.0 always corresponds to the reference isotropic mate-
rial. Moreover, the relative deviation of a quantity u, say, from the isotropic case is defined by
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Fig. 10. Angular distribution of the radial scattering amplitude |g,(¢)| for S-incidence with « =0 on the circular inclusion.
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Fig. 11. Angular distribution of the radial scattering amplitude |g,(¢)| for S-incidence with & = n/2 on the circular inclusion.

Ujg£1 — Ujg=1 Ulanisotropy — Ulisotro
RD(u) := |47 l4=1 _ 4] Py lisotropy - (89)
Ujg=1 Ulisotropy
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Finally, we select angles of incidence in the range of 0 to ©/2, including n/4, which coincides with a sym-
metry plane of the cubic material. We remind that the cubic material in the 2D-case has four planes of sym-
metry whose normals are on the coordinate axes and on the coordinate planes making an angle /4 with the
coordinate axes.

Figs. 2-15 correspond to the case where the elastic inclusion is one of circular cross-section. In Figs. 2-5,
the angular distribution of the radial scattering amplitude |g.(¢)| is shown for several angles of longitudinal
P-incidence o and varying anisotropy factor A. In the case of « =0 the effect of the anisotropy is pro-
nounced in both the forward and backscattering direction for any value of 4. We also observe that the dis-
tributions are symmetric with respect to the direction of incidence since the latter coincides with a plane of
material symmetry. The same observations hold for « = 1/2, which is also a plane of symmetry and further-
more, a comparison with the previous example verifies that the cubic structure preserves its symmetry prop-
erties under nt/2 rotations about x;-axis. For /4 incidence, the symmetry is also preserved but the effect of
the anisotropy on the computed quantities is weaker, especially in the forward scattering direction, for any
value of A. Finally, for an angle of incidence which does not coincide with a plane of symmetry, e.g., ©/9,
the symmetry w.r.t. the direction of incidence is no longer preserved except, of course, when 4 = 1.0 cor-
responding to isotropy.

In Figs. 6-9, the magnitude of the tangential scattering amplitude |g,(¢)| for transverse S-incidence at
several angles is examined. In this case, « =0 and m/2 have almost no effect on the computed quantity
for any value of the anisotropy factor. In contrast, a ©/4 incidence is shown to be the one that reveals
the anisotropy and up to a point its measure. Our previous remarks relatively to the symmetry of the dis-
tributions w.r.t. the angle of incidence are also valid here as one may observe from the case of ©/9 incidence.

We proceed with the examination of a ‘mixed’ case, in the sense that the incidence is of the transverse
type, i.e., an S-wave, and the radial scattering amplitude |g,(¢)| is observed. Figs. 10-13 correspond to this
case. The first plot referring to o = 0 actually demonstrates that such a combination of incidence-observa-
tion is unsuitable for detecting the presence of the anisotropy. The same holds for « = ©/2, while in the case
of a = m/4 the effect of the anisotropy, as far as the magnitudes of the computed quantities are concerned, is

270

Fig. 12. Angular distribution of the radial scattering amplitude |g,(¢)| for S-incidence with & = n/4 on the circular inclusion.
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Fig. 13. Angular distribution of the radial scattering amplitude |g,(¢)| for S-incidence with « = n/9 on the circular inclusion.
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Fig. 14. Relative deviation of the tangential displacement \ui‘;“| on the circular boundary versus anisotropy factor (A4) for S-incidences
and ¢ = a.

certainly smaller compared with the corresponding case where the tangential scattering amplitude was ob-
served, i.e., Fig. 8. The loss of symmetry is again obvious for an incidence of /9.
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Fig. 15. Relative deviation of the radial displacement || on the circular boundary versus anisotropy factor (4) for P-incidences and
p=n+a.

The previous results clearly indicate that the information on the specific anisotropic character of the
anisotropic inclusion is encoded in the far-field scattered wave. In the sequel we present computed results
concerning boundary values of the transmitted field. In Fig. 14, we examine the relative deviation from the
isotropic case of the circumferential component of the interior displacement field computed on the circular
boundary versus the anisotropy factor for transverse incidences and for an observation direction which
coincides with the incident one. We first notice that the results are in complete agreement with the corre-
sponding case where the far-field quantity, i.e., the tangential scattering amplitude was observed (see Figs.
6-9). Indeed, the r/4 incidence causes the greatest deviation from the isotropic case, while for « = 0 and n/2
the relative deviation tends to zero for any value of 4. We also observe that the sign of the computed ratio
follows a specific rule depending on the value of A being greater or less than 1.0. For completeness, the case
of P-type incidences and observation of the radial displacement in a direction being opposite to the incident
one is shown in Fig. 15, where now 0 and n/2 incidences cause the greatest deviation from the isotropic case
and the sign of RD follows the same rule. The agreement with the results presented in Figs. 2-5 is again
obvious.

Numerical results referring to the case of an elastic inclusion of elliptical cross-section with semi-axes
ratio equal to 1.2 are shown in Figs. 16-20. They are in quantitative agreement with those concerning
the circular scatterer as one may observe by comparing Figs. 16-19 with Figs. 6-9 with a qualitative dif-
ference lying in the fact that the distributions are no longer expected to be symmetric w.r.t. the direction
of incidence when o = n/4. Fig. 20 confirms once more the consistency of the results obtained upon observ-
ing far-field and near-field quantities.

Finally, we consider a multiple scattering problem involving two circular scatterers each filled with
the same cubic anisotropic medium. The inclusions are of equal cross-sections with their centers located
at the points (4,,0) and (—4,,0) on the x;-axis, where A, is the wavelength of the longitudinal wave in
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Fig. 16. Angular distribution of the tangential scattering amplitude |g,(¢)| for S-incidence with & = 0 on the elliptical inclusion.
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Fig. 17. Angular distribution of the tangential scattering amplitude |g,(¢)| for S-incidence with o = n/2 on the elliptical inclusion.

the background medium. In Figs. 21 and 22 the relative deviation from isotropy of the circumferential com-
ponent of the field transmitted in the right and the left inclusion, respectively, is shown. The observation
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Fig. 18. Angular distribution of the tangential scattering amplitude |g,(¢)| for S-incidence with « = n/4 on the elliptical inclusion.
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Fig. 19. Angular distribution of the tangential scattering amplitude |g,(¢)| for S-incidence with « = /9 on the elliptical inclusion.

direction of the transmitted fields coincides with the incident one and therefore a comparison with Fig. 14,
where the corresponding case of a single circular inclusion is considered, can be made. The similarity be-
tween the obtained results in the two cases is obvious.
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Fig. 20. Relative deviation of the tangential displacement \u‘i“| on the elliptical boundary versus anisotropy factor (A4) for S-incidences
and o =1+ o.
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Fig. 21. Relative deviation of the tangential displacement |ui;‘<”\ on the boundary of the right circular inclusion versus anisotropy
factor (A4) for S-incidences and ¢ = a.
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Fig. 22. Relative deviation of the tangential displacement \ui‘;“(z)\ on the boundary of the left circular inclusion versus anisotropy factor
(A) for S-incidences and ¢ = a.

5. Conclusions

The problem of a rigorous analysis of the elasticity equations governing the elastic behavior of an ortho-
tropic material in two dimensions was addressed in this paper. This analysis resulted in a Fourier series
expansion for the displacement field describing the elastic deformations of the orthotropic medium. A
mathematical model for the solution of the associated transmission scattering problem, taking advantage
of the aforementioned expansion was also settled. Numerical results for an inclusion of circular or elliptical
cross-section as well as for two circular inclusions with material properties characterized by the cubic sym-
metry class-a special case of the orthotropic class of symmetry-were presented. These examples have re-
vealed the possibility of recovering the special features of the scatterer’s anisotropic behavior based on
an appropriate interpretation of the observation results referring to either far-field or near-field quantities
for suitably chosen types and angles of incidence.

Appendix A

We briefly discuss the arguments leading to the establishment of the denseness of the function set 2 de-
fined in Eq. (42) in the space of solutions of equation LY = 0, where L is the operator defined in Eq. (26).
We first of all define

W(G)={ve C*(G)NC*G): Lv=0in G}, (90)
and denote by #(G) the H*G) closure of #°(G). We then consider the integral operator

H : [L*(0,2n)]> — # (G) defined by
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(HA)(V) _ ‘/OZT[[A_*_(L{)eikJr(u)I}T} du + AZﬂ[A_(u)eik(u)ﬁ<r] du, (91)

where 4 := (A4, A_) € [L*(0,2m). It is obvious that as the functions A(ux) run over [L*(0,2n)F, the func-
tions (HA)(r) ‘build’ the space 2.

Our primary objective is to show that the H*(G) closure of 2 coincides with #7(G). To this end, we will
first examine the denseness properties of the traces of functions belonging to the aforementioned spaces.
More precisely, the classical trace theory for Sobolev spaces (Wloka, 1987) ensures that every function v
belonging to #'(G) C H*(G) disposes interior traces y;v € H*(0G) and y;v € H'*(3G) (here and in the
sequel, by the superscripts (+) and (—) we distinguish the limits obtained by approaching the boundary
0G from R?\ G and G, respectively). If the function v is smooth enough for its boundary values to exist
in the classical sense, then one simply has y, v = v|,; and y;v = %} «c- 1t is sufficient for our purposes to show
that the space # := y; 2 x y7 2 is dense in the product space X := HY 20G)x H 1 %(3G), since then the appli-
cation of continuity arguments in boundary value problems ‘transfers’ this property to the interior space as
well. With this in mind, we first note that establishing the required denseness property Z = X is equivalent
to showing that #“ = {0}, where %#“ is the annihilator set of # (McLean, 2000) defined as the closed sub-
space of the dual space X* := HY 2(0G) x H Y %(3G) consisting of all the functionals that annihilate 2. In
particular, if (4, f) € #° then one has to show that the relation

(). () = [ e + [ o e o 92)

oG

for every A € [L*(0,2n)F implies that 4 = f= 0, where (-, -) vy denotes the corresponding duality pairing.
Hence, assuming that relation (92) holds, we introduce representation (91) in (92) and interchange the order
of integration to obtain that

for every (A4, A—) € [L*(0,2m)%. Consequently, upon defining

T ) o
Hi(u) = / e R Ry ds(r) + |z (e *=WRT) £ (r) ds(r), (94)
3G o 0v(r)
we have that # 1 (u) = 0 for every u € [0,2n). With the intention to identify 5. (u), u € [0,27) as the asymp-
totic form of a radiating field belonging to Ker L, we proceed by showing that the trigonometric exponen-
tial kernels appearing in the integrals of the definition (94) are closely related to the asymptotic formula for
the Green’s function associated with the operator L.
In particular, the Green’s function I'(r,r’) has the integral representation

ik-(r—r') 1 1 2n d 00 ek (r=r1)
F(V,V,): 2/ dk e. . - = 2 . / 2 2 ° 2 2 :
(2n)* Jre  L(iki,ik2) 4 2m)* Jo  Da(u) Jo (= — k2 ()] (k™ — k= (u))]

The evaluation of the integral on the real positive semi-axis is accomplished via an appropriate complex

integration technique taking into account the outgoing radiating behavior of the Green’s function. Follow-
ing this procedure, we finally arrive at the following expression:

(95)

- yn/2 A A
[(r,v) = 11 / o du [eik+(zz)k»(r—r’) B eik,(u)k«(rfr’)}
.

4 2yn)* Jirp pa?/Di(u)
1 1 n du
" 4 (2n)’ /0 pw?\/D(u) lg(k(u)lq]) — g(k—(u)lq])], (96)
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where ¥ — ¥ = |1 — ¥|(cosy,siny), g = k- (r — ) and g(-) := —Ci(-) cos(-) — si(-) sin(-), with si(*) and Ci(*)
denoting the sine and cosine integrals, respectively (Arfken and Weber, 1995). Applying stationary phase
arguments (Bleistein and Handelsman, 1986), one obtains the asymptotic behavior of I'(r,r’) with
r = r(cos ¢, sin q)) as r — oo

Z B+ 1k+ w)r efilq(u;r Vh(uf) v

ZB ek (k) ik (k)Y (,1/2), (97)

where uji € (¢ — /2,9 + n/2) are all the possible stationary points satisfying the equation

tan(u]:‘t - QD) = :t) )
J

with the prime over k.. indicating differentiation w.r.t. the argument and B*(u u; +) are specific regular expres-
sions in terms of ;. Given that k(u uy) -r=rcos(u; — @) >0, the outgoing behavior of the Green’s func-
tion is obvious.

Returning to (94), the functions # . (u) can now be considered as the generalized far-field patterns of the
scalar field

or(r,v)
oG Ov(r')

or r € R*\ G, which is a combination of two surface potentials. The elastic pair (U(r), Us(r)), r € R*\ G
defined by (see Egs. (34) and (35))

w(r) = /ac; L(r,/)h(¥)ds(¥) + S ds(r), (98)

Ui (r) = —0,0,w(r), 99)
Us(r) = (Q1n + Qéa)il(Qnaf + 04603 + po”)w(r), (100)

for r € R?\ G satisfies the coupled system of elasticity equations, propagates outwardly and has zero far-
field pattern (Nakamura and Wang, 2004; Natroshvili, 1996). From the generalized Rellich’s lemma for
anisotropic elasticity (Nakamura and Wang, 2004), we conclude that (U;, Us) = (0,0) in R* \ G. With the
aid of the definitions (99) and (100), one can show that this also implies w = 0 in R* \ G, apart indifferent
rigid motions.

Having established the result that w(r) vanishes identically for r ¢ G, we proceed by noting that the func-
tions /, f constitute the densities of the layer potentials defined in (98) and therefore can be expressed via
suitable jump relations for the field w(r) and its normal derivatives across the boundary 0G. The investiga-
tion of these jump relations requires the examination of the emerged boundary integral operators (r € 0G),
which in turn preassumes the knowledge of the asymptotic behavior of the Green’s function I'(r,r’) and its
derivatives as r — r' € 0G. More precisely, Eq. (96) is subjected to asymptotic analysis for |r — r'| — 0 with
the result that

r(rr) = [Al(xl — X)) 4 Ay (s — x;)z} Inlr—#] +O(r —¢[*In|r — ¥|), (101)

where 4; = 8(21—@2]]«,]': 1,2 with

7 cos?u ™ sin’u
I, = du, 1 :/ du. 102
1 /o D, (u) : o Dy(u) (102)
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The evaluation of the integrals [;, j = 1,2 is accomplished by employing complex analysis integration
techniques and hence finally reduces to a computation of the residues of specific functions at certain poles
lying inside the unit circle in C. We omit the details both for the sake of brevity and since the rest of our
analysis does not depend on the exact values of the integrals in (102) in any way.

By use of (101), one can straightforwardly verify the following asymptotic relations, valid for
r—r €0G:

or(r,v , , C 2 et
a\f(r/)) = 2[4, (¥, — x1)V| + Ax(x) — x2)Vy] In|r — | + [A1c08>) + Apsin®y] - (F — 1), (103)
o*r(r,r C D qay v-(r—vr
W = —2[Avv| + Ay In |1 — ¥| — 2[4 cos>y + Aosin®y]V - (F — ) ﬁ
’ / / / V- (l" - l’,) / /
+ 2, () —x1)v) + 42y — x2)v)] P + 20A, (x1 — x))vi + A (x2 = x3)v2]
‘A}/'(rlfr) 2 22 98 Al
ﬁ — [dicos®y + Apsiny]v - V', (104)
r—r

where y again denotes the angle between r and »’ and the prime indicates a function defined w.r.t. ¥, e.g.,
V' = (v}, v4) = 9(r) is the outward unit normal at the point ¥’ on dG. It follows immediately that the cor-
responding layer potential with kernel given either by (103) or (104) is continuous (Colton and Kress,
1983). In a similar fashion, one can also establish the continuity of the potential with kernel obtained by
differentiating (once or twice) I'(r,r’) w.r.t. v(r). As will become apparent in the sequel, the jump relations

for the layer potentials with kernels involving higher derivatives of the Green’s function, namely,

oI (r,v) o’r(r,v)

oAy Al g
o™ v(r)ov(r) ov(r)

are also need to be known. It can be shown after extended but straightforward calculations that the limiting
behavior of these kernels is of the form

o’ r(r,v) 0

——— L — A4, + AoV —— In|r — ¥ |+ (e, ¥), 105

O*v(r)ov(r) v o A ov(r) | I+ i) e
and

O’ (r,v) 0 / /

T T Anilg s e = # 4 o ), (106)

respectively, where I ?(r, V), j=1,2 constitute functions whose contribution to the jump relations of the
corresponding potentials is zero. Hence, the jump relations for the surface potentials P¢(r) and Pys(r) de-
fined by

P = [ ), e (107
Y AGTS NN
P = [ TS, rg G (108)

can be determined by the corresponding relations valid for the logarithmic single-layer potential SL¢(r) de-
fined as (see McLean, 2000)
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SLo(r) = % /ac ln|r_1r/|¢(r’) ds(¥'), ré¢aG. (109)

Using the notation [v]yg to denote the jump yjv — y;v across G and the well-known jump relation
[£SL¢].; = —¢, one can easily arrive at

[P, = —8m(Aivi + 4:v3)¢  and  [Pa]s; = 8m(A1v] + A>3y (110)

With the foregoing results at hand, we can now return to relation (98) and, with the aid of (103) and
(104) (see also the discussion following these relations), conclude that [w]sg =0 and [%}ac = 0. Since we
have shown that w =0 in R*\ G, the relations yow = 77w = 0 on 0G follow. In addition, Eq. (98) implies

that Lw(r) = 0 for r € G. In other words, the field w satisfies the homogeneous BVP
Lw=0 1in G, (111)
yow=7,w=0 on 0G, (112)

where the set of boundary conditions forms a normal Dirichlet system of order 2 (Wloka, 1987). It can be
verified that the operator L is properly elliptic if and only if the relation 2Qy > /0,05, — O,, holds be-
tween the elastic stiffness coefficients. Assuming that the operator L possesses this property, one can con-
clude that the BVP (111) and (112) satisfies the conclusions of the Riesz-Schauder spectral theorem (Wloka,
1987), according to which w vanishes identically in G, provided that the frequency w does not belong to the
discreet set of eigenvalues of the specific BVP. Now, from the one hand, the vanishing of the field w in G
(and in R?\ G also) implies that [g%”] :c = 0 while, on the other hand, the jump relation for the layer po-

tential £, obtained by differentiating (98), is

02

2
5] = ke = S + Ay (3)

r(ry)

due to the first relation in (110) and the continuity of the potential with kernel 20

function f must vanish and therefore the field w ‘reduces’ to

w(r) = /aGF(r,r’)h(r’)ds(r’), r ¢ 3G. (114)

. Hence, the density

In a similar fashion, one can see that the vanishing jump of the surface potential fj“; obtained by differ-
entiating (114) under the integral sign (for r € G) implies the vanishing of the function / since, by the second
relation in (110), it holds that
o*w
|:W:| o = [P2h]f>G = 871:(141\)% +A2V§)h (115)

Thus we have shown that the functions fand / both vanish and this completes the proof of the denseness
of the space # in X. We are in a position now to obtain the main result of this Appendix, that is, the closure

of 2 in HXG) coincides with % (G). This result is an immediate consequence of the fact that the version of

the BVP (111) and (112) with nonhomogeneous boundary conditions is well-posed. More precisely, for
every given pair of boundary data (fy, o) € X, the BVP

Lv=0 inG, (116)
Wfo} on 9G, (117)
YU =ho

possesses a unique solution » € H*(G) provided that  is not an eigenvalue of the corresponding Dirichlet
problem. This solution depends continuously on the given data in the sense that
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ollz26) < CUAollarree) + ol ee)) (118)

holds for some positive constant C. Since (fo, /i) can be approximated arbitrary closely in the norm of X by
(v5 4,77 ¢) with ¢ € 2, the approximation of the function v by ¢ in H*G) follows from (118) and this
proves our main assertion.

To finish our discussion, we wish to point out that an alternative approach to proving the desired dense-
ness result is offered by the methodology originally proposed in Colton and Kress (2001) for the case of far-
field acoustics and electromagnetics and adopted in Nintcheu Fata and Guzina (2004) for the near-field
elastodynamics case. This approach is based on variational methods and has the potential advantage of
avoiding the problems concerned with eigenvalues. However, the price paid for the latter advantage, is
an increment of the complexity of the whole approach compared with the one presented here. Such an ap-
proach will be the subject matter of a future work.

Appendix B

The explicit expressions for D! (r, ¢), Z' (r, @), t =r,¢ in Eq. (67) are

HWY (ke’“r) 2
v — img " P Xt A m (1) .ext
D (r,¢) :=2ue ”{v, [_f — k) (1 + - (k;"tr)z) H,/ (k) r)

() )
r k;’“r2 ’

. H(l)’ kextr H(l) kextr
Dy(r. o) :—2ﬂelmw{vf[im< = )— w (kp7)

ext_p
r
kp r

(1) (.ext 7 7.ext 2
Hm (kp r) N (’“kp + mt >H(1)(k;xtr)‘| }
ext ) m )
r 2u kyr
. ) H(l), kext H(l) kext
Z (r, ) = Zue‘”""{v, [mx( n (K7r)  H (KT
>

ext o
k> r

H(l)/ (k:xtr) k:xl m2 .
ot (5~ a0

+v,

+ve

+v
? r

) H(l)/ kexl 1 2
Z(r ) i= 2pe™ { " [# + K (5 B <k—:ft—r)z . (k)

HW (pext (1) (gext
im m (ks r) _ Hn1 (ks r) ,
k&2 r

where v,, v,, are the polar coordinates of the outward unit normal ¥ on 0G and the prime denotes differen-
tiation with respect to the argument.

+ve
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The quantities o, (r, ¢ F(r, @) entering Eq. (68) are determined by
(

) and )
i m+1) M
Fi(r, ) == i Z I (u;) cos u; sin u;[v; 0y, cos u; + v, Qgq sin u)]
J=1

ki(”j):
* 01> + O

(QHCOSZuj + Q(,ésinzu‘,)] }eiki(uj>r<:05((0u/)eim’uj } }7

[ViOy, sinu; + 206 cOS 1] [p® — i (u))

(m'+1) M
G (r, ) == { i Z {{ki(uj) cos u; sin u;[vi Qe sinu; + v,0,, cos u;]
=1

ke (u;)
O + Ogs

<anos2uj+géﬁsin2u_,«>]}e e >}}

where vy, v, are the Cartesian components of v on 0G.
The explicit expressions for the elements VB¢ | 5= {4 B™'}, j=1,2,3,4 are

m.n>
ime
)
[(Fns0n)

ex lm
Hps™ . — { o HW (k™) cos o + HY (k) sin | e "”‘/’}
ks T [(rns9n)

+ [vi Qg COS U + v205, sinuj] [sz - ki(”j)

O™ = { HWY (k2r) cos ¢ — kle% Wk r)sing e
r
P

(Z)Bj:;: = { Hgnl)’(kext )sm(p +keXt 1 kext COS ] nnrp}
[(nsp)

- [ im .
@Bt = { ——HO (k%) sin @ — H' (k%) cos ¢ | ™ }
' |(a,0)

_k:’“r

CIBL =D, (rs, 9,) cos @, — DY (ra, 9,) sin @,

OB =7, (s, 0,) cOs 9, — Z0(r, @,) sin @,

1= D, (ra, ¢,) Sin @, + Dy (r0, @,) COS @,
WS =70 (r, 0,) sin @, + Z0 (1, @,) OS @,

and for the elements VB!, t={A4",47},j=1,2,3,4 are

m' .n>

-—m’ M
. —ik+ (uj)rcos(p—u;) aim'u;
= E 2 (u;) sin u; cos uje %= e} ,

- (- 02)

X
il
|

c—m' M
1 : )
(Z)BA,i — 1_ - w2_k2 " COSzu-+ sinzu- e1ki(ub,-)rcos((/)uj)elmuj}
m'.n {M IZI: le +Q66 [p j:( ])(Qll ] Q66 1)} " )’
£
(3)Bﬁt’,n = —Frj;,(rn’ q;n)7

(4>BAfn = =Gl (7, )
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